RecA-mediated homology search as a nearly optimal signal detection system.

نویسندگان

  • Yonatan Savir
  • Tsvi Tlusty
چکیده

Homologous recombination facilitates the exchange of genetic material between homologous DNA molecules. This crucial process requires detecting a specific homologous DNA sequence within a huge variety of heterologous sequences. The detection is mediated by RecA in E. coli, or members of its superfamily in other organisms. Here, we examine how well the RecA-DNA interaction is adjusted to its task. By formulating the DNA recognition process as a signal detection problem, we find the optimal value of binding energy that maximizes the ability to detect homologous sequences. We show that the experimentally observed binding energy is nearly optimal. This implies that the RecA-induced deformation and the binding energetics are fine-tuned to ensure optimal sequence detection. Our analysis suggests a possible role for DNA extension by RecA, in which deformation enhances detection. The present signal detection approach provides a general recipe for testing the optimality of other molecular recognition systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.

Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we...

متن کامل

On the Mechanism of Homology Search by RecA Protein Filaments.

Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein...

متن کامل

The search for DNA homology does not limit stable homologous pairing promoted by RecA protein

BACKGROUND The basic molecular mechanisms that govern the search for DNA homology and subsequent homologous pairing during genetic recombination are not understood. RecA is the central homologous recombination protein of Escherichia coli; because several RecA homologues have been identified in eukaryotic cells, it is likely that the mechanisms employed by RecA are conserved throughout evolution...

متن کامل

Cooperative RecA clustering: the key to efficient homology searching

The mechanism by which pre-synaptic RecA nucleoprotein filaments efficiently locate sequence homology across genomic DNA remains unclear. Here, using atomic force microscopy, we directly investigate the intermediates of the RecA-mediated homologous recombination process and find it to be highly cooperative, involving multiple phases. Initially, the process is dominated by a rapid 'association' ...

متن کامل

RecO-mediated DNA homology search and annealing is facilitated by SsbA

Bacillus subtilis RecO plays a central role in recombinational repair and genetic recombination by (i) stimulating RecA filamentation onto SsbA-coated single-stranded (ss) DNA, (ii) modulating the extent of RecA-mediated DNA strand exchange and (iii) promoting annealing of complementary DNA strands. Here, we report that RecO-mediated strand annealing is facilitated by cognate SsbA, but not by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 40 3  شماره 

صفحات  -

تاریخ انتشار 2010